Math 2374 Syllabus

- How to get started
- Assessment: quizzes, Mathematica notebooks, 3 midterm exams, final exam.
- Put the exam dates on your calendar.
- No homework to hand in. Quizzes and exams are based on the homework.
- Missing exams and quizzes
- Course content is organized around Modules
- Mathematica notebooks, downloading Mathematica. Get to work on the notebooks before the session on Thursday.

There is too much to read!

Section 1.3: Matrices, determinants and the cross product.

We learn

- Determinants of 2×2 and 3×3 matrices ($\mathrm{n} \times \mathrm{n}$ in section 1.5)

$$
\begin{aligned}
& \operatorname{Det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \Rightarrow a d-b c 2 \\
& \operatorname{Det}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=1 \cdot 4-2 \cdot 3=-2 \\
& \operatorname{Det}\left[\begin{array}{lll}
a & b & c \\
a & e & f
\end{array}\right]=a e i+b f g+c d h \\
& \operatorname{Det}\left[\begin{array}{ll}
a & f \\
a & b \\
i
\end{array}\right]=-g e c-h f^{2} a-\operatorname{ld} b \\
& \left.\operatorname{Det}\left[\begin{array}{rrr}
1 & 0 & -1 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]=\begin{array}{l}
1+0<2 \\
-1-0-0
\end{array}\right] \\
& \left\{\begin{array}{l}
\text { determinant is } 0 \\
\text { switch } 2 \text { rows } \\
\operatorname{Det}\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]=c b-a d=-(a d-b c) \\
\operatorname{Det}\left[\begin{array}{cc}
a+e & b+2 \\
c & d
\end{array}\right]=\operatorname{Det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\operatorname{Det}\left[\begin{array}{cc}
e & 2 f \\
c & d
\end{array}\right]
\end{array}\right. \\
& \begin{array}{l}
\operatorname{Det}\left[\begin{array}{cc}
a & b \\
a & b
\end{array}\right]=a b-a b=0 \\
=\operatorname{Det}\left[\begin{array}{cc}
a-a & b-b \\
a & b
\end{array}\right]=\operatorname{Det}\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]=0
\end{array} \\
& \begin{array}{l}
\operatorname{Det}\left[\begin{array}{cc}
a & b \\
a & b
\end{array}\right]=a b-a b=0 \\
=\operatorname{Det}\left[\begin{array}{cc}
a-a & b-b \\
a & b
\end{array}\right]=\operatorname{Det}\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]=0
\end{array} \\
& \text { determinant is } 0
\end{aligned}
$$

Determinants satisfy:
Linearity in each row and in each column If we interchange two rows (or two columns) the determinant is multiplied by -1 .
If we add a multiple of one row to another, the determinant is unchanged. (Same for columns). If two rows (or two columns) are the same, the

The cross product for vectors in \mathbb{R}^{3}
Definition: If $a=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right)$
Then "a cross $b^{\prime \prime}$ is

$$
a \times b=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

$$
=\operatorname{Dct}\left[\begin{array}{lll}
1 & 1 & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right] \quad \begin{gathered}
1 \\
\tau_{3} \\
l=(1,0,0) \\
\\
k=(0,1,0) \\
k=(0,0,1)
\end{gathered}
$$

Properties of the cross product:
$a \times b$ is perpendicular to a and to b, and has length ||a|| ||b|| |sin u |
$a, b, a \times b$ is a right-handed set of vectors.

Pre-Class Warm-Up !!

- Evaluate the cross product
$(1,-1,2) \times(-1,2,1)$

Answer:

a. $(5,3,-1)$
b. $(-1,-2,2)$
c. $(-5,-3,1)$
d. $(1,-2,-2)$
e. None of the above

Determinants, cross products, areas of parallelograms and volumes of parallelepipeds

In 3-D, $a \times b$ has length equal to the area of the parallelogram determined by a and b.

$$
\begin{aligned}
& (a \times b) \cdot c=\left|\begin{array}{lll}
1 & 1 & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \cdot c \\
& \quad=\left|\begin{array}{lll|l}
c_{1} & c_{2} & c_{3} & \Sigma \\
a_{1} & a_{2} & a_{3} & v^{2} \\
b_{1} & b_{2} & b_{3} & 2
\end{array}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\right.
\end{aligned}
$$

In 3-D the volume of the parallelepiped determined by a, b and c is the triple scalar ${ }_{\text {? }}$ product $(\mathrm{a} \times \mathrm{b}) \cdot \mathrm{c}$ (in absolute value). Why?
This equals the determinant of the matrix Why? \{a|b|c\}.

z base. height
$=\|a \times b\|\|c\||\cos \phi|$
$=|(a \times b) \cdot c|$

Why does the tripie product $(a \times b) \bullet c$ equal Det $\{\mathrm{a}|\mathrm{b}| \mathrm{c}\}$?
This means we don't really need the triple product.

Equations of planes, distance from a point to a plane, line of intersection of two planes, etc.

You have HW questions like:
Find an equation of the plane that is. Serpendicula to $(1,2,3)$ and pass trough $(1 ; 1,0)$ It is $1 \cdot x+2 \cdot y+3 z=D$. Find D $1-1+2(-1)+3-0=D=-1$
Find the distance from the point to the plane
Find the intersection of the two planes

Page 41
The equation of a plane in 3-space has form

$$
A x+B y+C z+D=0
$$

or $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$
Why?
$A x+B y+C z=0$ is the plane perpendicular to the vector ($\mathrm{A}, \mathrm{B}, \mathrm{C}$).passing through 0
This equation says

$$
\begin{aligned}
& (A, B, C) \cdot(x, y, z)=0, \\
& (A, B, C) \text { is peso to }(x, y, z)
\end{aligned}
$$

What about D ?

Example: Find the equation of the plane perpendicular to $(1,-2,3)$ passing through $(-1,0,2)$.

Possible answers:

1. $-x+2 z=2$
2. $x-2 y+3 z=5$
3. $x-2 y+3 z=1$
4. $x-y+2 z=3$
5. None of the above -

$$
\begin{aligned}
& 1 \cdot x-2 y+3 z= \\
& 1(-1)-2 \cdot 0+3 \cdot 2=5
\end{aligned}
$$

Like page 42 Example 11
Find the equation of the plane passing through the points
($1,1,1$), ($-1,2,0$) and (3,1,-1)

$a \times b$ is perv. to the plane.

ax points in the direction of the line.

Like page 50 qu 20: Find the intersection of two planes.

Like page 43
Find the distance from the point $(1,0,-1)$ to the plane $2 x-y+z=4$

First: which of the following points lie in the plane?

1. $(1,0,-1)$
2. $(1,0,2)$
3. $(1,1,1)$

$$
(0,0,4) \text { lies in }
$$ plane.

Could you find another point in the plane?

